

Past Papers Standard Grade Chemistry **Marking Scheme**

2013	KU		PS		
Credit	/30	%	/30	%	
1	24+	80%	25+	83%	
2	19+	63%	16+	53%	
See general	<19	<63%	<16	<53%	

2013 Standard Grade Chemistry Credit Marking Scheme											
Question	Answer	Chemistry Covered									
_		Answer	A	В	С		D		E	F	•
1a	В	Element Hy	drogen Co	pper 85°C	Охуд	jen	Iron	Mag	gnesium	Iod	ine
		Melting Pt -	259°C 100 (1083°C in ol	ld data booklet)	-219	°C	1538%	<u> </u>	50°C	. 114	°C
1b	D	Iron metal is n	nade when iron Fe2O	oxide is $3 + 3C($	s reduce	d by	carbon m ► 2Fe +	onoxide in · 3CO2	a blast t	urnace	::
		Gas	Hydroger	<u>,</u>		Οχνα	en	Carb	on Diox	ide.	1
1c	A	Test	burns with a p	Dop	relights	s a gloi	wing splint	turns li	ime water	milky	
		Ans	wer	А	В		С	D	E	F	F
2a	С	Ic Flectron Arran	n aement of Ton	Al ³⁺ 2.8	Cl ⁻ 2.8	8	Li⁺ 2	H⁺ 0	Br⁻ 2 8 18 8		H ⁻ /a
		Positive ions w	ill only form co	mpound	s with ne	egativ	- ve ions	•	2,0,10,0	<u> </u>	ŭ
2b	A+F Both for 1 mark	∴ Any combina	tion with two p	ositive i	ons or t	wo ne	gative io	ns can be o	discounte	ed.	
		Aluminium Hyd	roxide AI(OH):	3 15 the	only inso	oluble	combina	tion on pag	ge 8 of d	ata boo	Klet
2c	F	H⁺ ions are fou	nd in all acids o	and OH ⁻	ions are	e four	nd in all a	lkalis			
За	С	No voltage is o	btained when t	the same	e metal i	is att	ached to	itself in a	cell		
3b	B+D Both for 1 mark	Gold and lead are being investigated by attaching them to the same metal (tin) in a circuit with the same electrolyte (potassium nitrate solution). The results obtained would show that the direction of electron flow is the same from tin to the lead/gold so both metals are below tin in the electrochemical series. The voltage obtained from the tin/gold cell will be greater than the tin/lead cell so lead must be nearer tin on the electrochemical series and therefore higher up the electrochemical series.									
10	D	Carbohydrate	fructose	gluc	cose	ma	altose	starc	h :	sucros	e
4 0		Formula	$C_6H_{12}O_6$	C ₆ H	12 0 6	<i>C</i> ₁₂	H ₂₂ O ₁₁	(C ₆ H ₁₀ C	05)n Ci	2H22	D ₁₁
4b	C+E	Туре	monosaccharide	monosad	ccharide	disa	ccharide	polysacche	aride di	sacchar	ide
	Both for 1 mark	Status	monomer	mone	omer	c	limer	condensa polyme	r r	dimer	
4c	A+B Both for 1 mark	Result of Hydrolysis	no hydrolysis	no hyd	Irolysis	Hydr two	olyses to glucose units	Hydrolyse many gluc units	es to Hy cose g	drolyse: lucose a fructos	s to nd e
5	B+E Both for 1 mark	 A The pH of acids will increase to 7 as water dilutes the acid B Acidity decreases as water is added as concentration of H⁺ ions decrease C The pH of acids will increase to 7 as water dilutes the acid D Acidity decreases as water is added as concentration of H⁺ ions decrease E The solution becomes less concentrated as water dilutes the acid 									
6a	F	Polymer Monomer	poly(ethene) ethene	p	ooly(proper propene	ne)	poly(chlo chloro	roethene) ethene	polyst stvr	yrene ene	7
6b	E	$+ H_{2} \qquad H H$									
6c	B+D Both for 1 mark	Isomers have same molecular formula but different structural formula:StructureABCDEFFormulaC3H3NC2H2Cl2C4H8C2H2Cl2C2H4C3H6									
6d	A+C Both for 1 mark	Monomer 1 has Monomer 2 has	-CH₃ groups o s -CN group on	n either either s	side of side of	C=C C=C in	in monomo monomer	er∴Mono °∴Mono	mer 1 = 3 mer 2 = 3	Structu Structu	ire C Ire A

			Particle	Location	Charge	Mass			
7	D,E 1 mark each		Proton	in nucleus	+1	1 amu			
			Neutron	in nucleus	0	1 amu			
			Electron	outside nucleus	-1	approx ze	ero		
		⊠ A Glucose C6H12O6 solution is covalent							
8		and is a non-conductor B potassium nitrate is an ionic compound and does not conduct in the solid state			Bonding	Solid	Liquid	Solution	
					Metallic (metals only)	\checkmark	\checkmark	-	
	C,E 1 mark each	C,E 1 mark each	ate can conduct Int and does not	Covalent (non-metals only)	· x	×	×		
		conduct el ⊠Eionic comp solution st	ectricity ounds in bot	h the liquid and	Ionic (metals + non-metals	, x	\checkmark	\checkmark	

9a	Fe ²⁺	Ferroxyl Indicator turns blue in presence of Fe ²⁺ ions turns pink in presence of OH ⁻ ions				
9b	OH-	From data booklet page 7: 2H2O(1) + O2(g) + 4e ⁻ + 4OH ⁻ (aq)				
9с	Mg provides electrons to Fe	Magnesium protects iron from corroding by sacrificial protection because magnesium is more reactive than iron. Magnesium corrodes and supplies the attached iron metal with the electrons to prevent it from corroding.				
9d	covalent	Ionic compounds speed up corrosion by providing the ions needed to act as an electrolyte which completes the circuit. Covalent compounds, like ethylene glycol, contain no ions and will not speed up corrosion.				
10a(i)	⁶³ ₂₉ Cu	atomic number				
10a(ii)	34	Number of neutrons = mass number - atomic number = 63 - 29 = 34				
10b	64	The relative atomic mass is the average of the masses of the different isotopes $\begin{array}{c} relative \\ atomic \\ mass\end{array} = \begin{array}{c} 63+65 \\ \hline 2 \end{array} = 64 \end{array}$				
11a(i)	Sodium phosphate	Metal comes first in the name Non-metal comes second in the name 3rd element is oxygen = -ate sodium phosph- -ate				
11a(ii)	Restore essential elements to soil	 Fertilisers are soluble compounds containing at least one element from potassium, phosphorus or nitrogen added to soil to restore the essential element compounds to the soil to aid growth of plants. 				
11b	Iron	Nitrogen + Hydrogen <mark>iron →</mark> Ammonia				
11c	(nitrifying) bacteria	Nitrifying bacteria are found in root nodules in leguminous plants which fix atmospheric nitrogen into nitrogen compounds in plants. e.g. Bean family. Pea family and clover are leguminous plants				
12a	36°C to 126°C	Information found on 9 of data bookletAlkanemethaneethanepropanebutanepentanehexaneheptaneoctaneFormulaCH4C2H6C3H8C4H10C5H12C6H14C7H16C8H18Boiling Point-162°C-89°C-42°C-1°C36°C69°C98°C126°C				
12b	0.718	Percentage Pentane Hexane Heptane Octane Nonane Formula C5H12 C6H14 C7H16 C8H18 C9H20 Density 0.626 0.659 0.684 0.703 - Difference 0.033 0.025 0.019 (0.015) Prediction - - - 0.718				
12c(i)	Carbon and Hydrogen	Carbon in carbon dioxide must have come from fuel D Hydrogen in water must have come from fuel D Oxygen in carbon dioxide and water might have come from fuel D or from air				
12c(ii)	Hydrogen	Water is the only product of the combustion of fuel B ∴ the fuel is likely to be hydrogen as the hydrogen in water must have come from the fuel and not the air.				
13a	Neutralisation	Neutralisation reactions involve the reaction of H ⁺ ions to form water.				
13b	Increase in temp increases the rate	The reaction rate is inversely proportional to the time taken for the reaction. As the time decreases in the table, the rate of reaction must increase.				
14a	504 ²⁻	$\begin{array}{rcl} Zn(s) &+ & Cu^{2+}(aq) &+ & SO_4^{2-}(aq) &\rightarrow & Zn^{2+}(aq) &+ & Cu(s) &+ & SO_4^{2-}(aq) \\ & & Cancel \mbox{ out any spectator ions which appear on both sides} \\ Zn(s) &+ & Cu^{2+}(aq) &+ & SO_4^{2-}(aq) &\rightarrow & Zn^{2+}(aq) &+ & Cu(s) &+ & SO_4^{2-}(aq) \\ & & Re-write \mbox{ equation omitting spectator ions} \\ Zn(s) &+ & Cu^{2+}(aq) & & \rightarrow & Zn^{2+}(aq) &+ & Cu(s) \end{array}$				

		$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$ Split the redox reaction into its component halves				
		$Zn(s) \longrightarrow Zn^{2+}(aq)$				
	2	$Cu^{2+}(aq) \longrightarrow Cu(s)$				
14b	$Zn \rightarrow Zn^{2+} + 2e^{-}$	Balance equations by adding electrons into ion-electrons equations				
		$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-1}$				
		$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$				
		Oxidation reactions have electrons <u>after</u> the arrow Reduction Reactions have electrons <u>before</u> the arrow				
	zinc copper	The metals in a cell should be placed in solutions of that metal				
14c(i)	zinc	Copper electrode is placed in copper sulphate solution				
110(1)	sulphate	• Zinc electrode is placed in a zinc sulphate solution				
	solution	(any soluble zinc compound can be used as the electrolyte in the zinc electrode beaker)				
14c(ii)	lo complete	The ion bridge contains an ionic solution which allows ions to move through				
	the circuit	the ion bridge to balance the movement of charge from zinc to copper				
	$C_{\mu}H_{2\mu,1}OH$	Ethanol Propan-2-ol				
15a	or	C_2H_5OH C_2H_6O C_3H_7OH C_3H_8O				
150		If n=2 then 2n+1=5 If n=2 then 2n+2=6 If n=3 then 2n+1=7 If n=3 then 2n+2=8				
	$C_nH_{2n+2}O$	$\therefore C_nH_{2n+1}OH \qquad \therefore C_nH_{2n+2}O \qquad \therefore C_nH_{2n+1}OH \qquad \therefore C_nH_{2n+2}O$				
451	Carbon dioxide	glucose yeast enzymes ethanol + carbon dioxide				
15b(i)		$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$				
		Distillation is used to produce alcoholic drinks with an alcohol content above 16%.				
	Distillation	Yeast makes alcohol by anaerobic fermentation but at around 16% alcohol the yeast				
15b(ii)		cannot survive.				
		points and the ethanol is then collected and used in spirit drinks like whisky, vodka				
		rum, etc.				
		ннно				
	Diagram showing:					
15c		H - C - C - C - O - H				
		н н н				
	pentylbutanoate	First name comes from alkanol Second name comes from alkanoic acid				
		$ \begin{array}{ccc} \text{methanol} & \rightarrow & \text{methy} \\ \text{sthanol} & \rightarrow & \text{methanol} \\ \text{sthanol} & \rightarrow & \text{sthanosts} \\ \end{array} $				
15d		$ \begin{array}{cccc} \text{ernanoi} \rightarrow \text{erny} & \text{ernanoic acid} \rightarrow \text{ernanoare} \\ \text{prepared} \rightarrow \text{prepared} & \text{prepared} \\ \end{array} $				
		\rightarrow propandi \rightarrow propyr propandic acid \rightarrow propandare				
		$\begin{array}{cccc} \text{pentanol} & \rightarrow & \text{pentanol} & \text{pentanol} & \rightarrow & \text{pentanoate} \\ \end{array}$				
		Method Electrolyzia Liest With Carbon Liest Alars				
16a	heat alone	Potassium Sodium Zinc Tron				
	reacting with carbon	Metals Made Lithium Calcium Tin Lead Mercury Silver				
	electrolysis	Magnesium Aluminium Copper				
		reason most reactive metals medium reactive metals least reactive metals				
16h/i)	86.2%	mass of Ho = 200.5				
100(1)	00.2 /0	$\%$ Hg = $\frac{1103507}{100}$ × 100 = $\frac{1200.5}{2325}$ × 100 = 86.2%				

16b(ii)	Hg²⁺	 Hg (mercury) is a transition metal and does not have a set valency to work out the charge on the metal ion. The sulphide ion has a negative charge as it is a non-metal ion The sulphide ion has a two negative charge as sulphur is in group 6 and has a valency of 2 ∴ S²⁻ ion The mercury ion must have a positive charge as it is a metal ion The mercury ion has a two positive charge to balance the two negative charge of the S²⁻ ion ∴ Hg²⁺ 				
17a	Diagram showing:	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$				
171	positive	A covalent bond is a shared pair of electrons between two atoms.				
170	electrons	as the positive nuclei would reper each other, it is the attraction of the positive nuclei for the shared pair of electrons holds the molecule together.				
17c	35.5g	$1 \text{mol } N_2 = 2 \times 14 = 28g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{7g}{28g \text{ mol}^{-1}} = 0.25 \text{mol}$ $N_2 + 3F_2 \longrightarrow 2NF_3$ $1 \text{mol} \qquad 2 \text{mol} \qquad 0.25 \text{mol}$ $0.25 \text{mol} \qquad 0.5 \text{mol}$ $1 \text{mol } NF_3 = (1 \times 14) + (3 \times 19) = 14 + 57 = 71g$ $\text{mass} = \text{no. of mol} \times \text{gfm} = 0.5 \text{mol} \times 71g \text{ mol}^{-1} = 35.5g$				
18a(i)	Line graph	¹ / ₂ mark ¹ / ₂ mark ¹ / ₂ mark ¹ / ₂ mark labelling axes correct scales plotting points drawing line				
18a(ii)	37	Increasing the temperature will increase the rate of reaction and the gas will be given off quicker. However, the final volume of gas given off will be 37cm ³ as the volume of gas given off is fixed by the quantities of reactants used (which are the same in both experiments)				
18b(i)	0.001	n o. of moles = v olume × c oncentration = 0.02litres × 0.05 mol l ⁻¹ = 0.001 mol				
18b(ii)	0.04	concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.001 \text{ mol}}{0.025 \text{ litres}}$ = 0.04 mol l ⁻¹				
18c	sodium sulphate	$\begin{array}{cccc} ACID & + & METAL \\ CARBONATE & \longrightarrow & SALT & + & WATER & + & \\ & & CARBONATE \\ sulphuric & sodium \\ acid & + & carbonate \\ & & carbonate \\ \end{array} & sulphate \\ & + & water & + \\ & & dioxide \\ \end{array}$				

